Quadratic Constraints for Local Stability Analysis of Quadratic Systems

2022 IEEE Conference on Decision and Control, Cancun, Mexico

Shih-Chi Liao University of Michigan Dept. of EECS

Peter Seiler University of Michigan Dept. of EECS

Acknowledgement: This work was funded by the US Army Research Office

Motivation: Quadratic Systems

- Navier-stokes equations
 Population dynamics
- Taylor approximation

 $\dot{x}(t) = Ax(t) + \phi(x(t))$, where $\phi(\cdot)$ is a quadratic function

How to analyze the local stability of such nonlinear quadratic systems?

Key Takeaways

- 1. Proposed **new quadratic constraint (QC)** to characterize quadratic nonlinearities
- 2. Reduced conservatism in stability analysis using newly proposed QCs
- **3**. The new QCs can be applied to other **analysis involving dissipation inequality** such as prformance, reachability, robustness

Outline

- Motivation
- Problem Formulation
- Region of Attraction Estimation using Quadratic Constraints
- Quadratic Constraints for Quadratic Functions
- Numerical Example
- Conclusion

Problem Formulation

- Given a quadratic nonlinear ODE
 - $A \in \mathbb{R}^{n \times n}$ is Hurwitz.
 - ϕ is homogenous quadratic polynomial
 - Multiple equilibrium points.
- Region of attraction (ROA) of the origin*:
 - Initial conditions that converge to the origin
- Goal: find a largest spherical ROA estimate
 - Radius as the metric of the size of ROA estimate

$$\dot{x}(t) = Ax(t) + \phi(x(t))$$

*Other equilibrium can be shifted to origin and form another quadratic system by change of coordinates.

Methods for ROA Estimation

- Direct simulation
 - Easy to verify stability of initial conditions
 - No guaranteed over a region
- Lyapunov stability using sum-of-square optimization [1][2]
 - Good estimation with high-degree Lyapunov function
 - Suffer from curse of dimensionality
- Absolute stability using quadratic constraints (QCs) [3][4][5]
 - Moderate scalability
 - Conservative estimation

[1] P. Parrilo, "Structured Semidefinite Programs and Semialgebraic Geometry Methods in Robustness and Optimization," Thesis, 2000

[2] U. Topcu, A. Packard, P. Seiler, and G. Balas, "Help on SOS," IEEE CSM, 2010

[3] C. Liu and D. F. Gayme, "I/O inspired method for permissible perturbation amplitude of transitional wall-bounded shear flows," Phys. Rev. E, 2020

[4] A. Kalur, T. Mushtaq, P. Seiler, and M. S. Hemati, "Estimating ROA for Transitional Flows using QC," IEEE L-CSS, 2021

[5] L. F. Toso, R. Drummond, and S. R. Duncan, "Regional stability analysis of transitional fluid flows," IEEE L-CSS, 2022

ROA Estimation using Quadratic Constraints

[6] V. M. Popov, "Absolute stability of nonlinear systems of automatic control," Automation Remote Control, 1962

[7] V. A. Yakubovich, "Frequency condition of absolute stability ...," Avtomat. i Telemekhan., 1967

[8] A. Megretski and A. Rantzer, "System analysis via integral quadratic constraints," IEEE TAC, 1997

[9] J. Veenman, C. W. Scherer, and H. Köroğlu, "Robust stability and performance analysis based on IQC." European Journal of Control, 2016

Quadratic Constraints

• Consider nonlinearity $\phi : \mathbb{R} \to \mathbb{R}$ is (locally) sector bounded in $[\alpha, \beta]$:

•
$$z = \phi(x)$$

•
$$(z - \alpha x)(\beta x - z) \ge 0 \quad \forall x \in \mathcal{E}$$

• Characterize ϕ by its input and output signals:

$$\begin{bmatrix} x \\ z \end{bmatrix}^{+} M_{\alpha,\beta} \begin{bmatrix} x \\ z \end{bmatrix} \ge 0, \ z = \phi(x), \forall x \in \mathcal{E}$$

• A tighter QC provides a more accurate description of $\phi(\cdot)$ and gives a less conservative analysis.

Existing QCs for Quadratic function

- [3] proposed QCs to bound $\phi(\cdot)$ in a spherical local region $\{x | x^T x \le \alpha^2\}$.
- [4] applied Cauchy-Schwarz inequality to generalized QCs to an ellipsoidal local region $\{x | x^T P x \le \alpha^2\}$, named **CSQC**.

[3] C. Liu and D. F. Gayme, "I/O inspired method for permissible perturbation amplitude of transitional wall-bounded shear flows," Phys. Rev. E, 2020 [4] A. Kalur, T. Mushtaq, P. Seiler, and M. S. Hemati, "Estimating ROA for Transitional Flows using QC," IEEE L-CSS, 2021

Conservatism of CSQC [4]

- $z_1 = x_i^2$
 - Positive definite
- CSQC in $\{x^{\top}x \leq 1\}$
 - $x_i^2 z_1^2 \ge 0$

- $z_2 = x_i x_j$, $i \neq j$
 - Sign-indefinite
- CSQC in $\{x^{\mathsf{T}}x \leq 1\}$
 - $\frac{1}{4}(x_i^2 + x_j^2) z_2^2 \ge 0$

CSQC is loose along $x_i = 0$ and $x_j = 0$

[4] A. Kalur, T. Mushtaq, P. Seiler, and M. S. Hemati, "Estimating ROA for Transitional Flows using QC," IEEE L-CSS, 2021

New QCs on $z_2 = x_i x_j$

- CSQC is loose along $x_i = 0$
- Valley QC along $x_i = 0$:

$$\begin{aligned} x_i^2 - z_2^2 &= x_i^2 (1 - x_j^2) \\ &\geq 0 \quad \forall x \in \{ x^\top x \le 1 \} \end{aligned}$$

- Tight along $x_i = 0$
- Loose elsewhere

CSQC and Valley QCs jointly Bound $z_2 = x_i x_j$

- Monomial $z_2 = x_i x_j$
- Less conservative characterization by CSQC, Valley QC 1, and Valley QC 2

- Generalization of Valley QC:
 - Ellipsoidal region $\{x^{\top}Ex \leq \alpha^2\}$
 - Quadratic fun. with Hessian being rank-2 and sign-indefinite
 - Quadratic fun. with Hessian being rank-3 and sign-indefinite
 - Cross-product of quadratic functions (inspired by [5])

See paper for more details

Numerical Examples – 2-State Example [6]

$$\frac{d}{dt} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -50 & -16 \\ 13 & -9 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 13.8 \\ 5.5 \end{bmatrix} x_1 x_2.$$

- Largest spherical ROA ≈ 4.95
- ROA estimation using two sets of QC
 - Set 1: $r_1^* = 2.7355$
 - 1* CSQC
 - Set 2: $r_2^* = 3.5224$
 - 1* CSQC, 2* Valley QCs
- The use of Valley QCs produce a better estimation.
- A 3-state example is presented in the paper.

[6] F. Amato, C. Cosentino, and A. Merola, "On the region of asymptotic stability of nonlinear quadratic systems," Mediterranean CCA, 2006

Conclusions

- 1. Proposed **new quadratic constraints** to characterize quadratic nonlinearities
- 2. Reduced conservatism in stability analysis using newly proposed QCs
- 3. The new QCs can be applied to other **analysis involving dissipation inequality**

Peter Seiler

Maziar Hemati

Talha Mushtaq

Diganta Bhattacharjee

Aniketh Kalur

BACKUP SLIDES

Lur'e Decomposition

- System: $\dot{x} = Ax + \phi(x)$
- Separate the linear part and nonlinear part of a system into feedback interconnection:

$$\dot{x} = Ax + Bz$$
$$Bz = \phi(x)$$

- *B* is a matrix
- z is a vector

- $z = \phi(x)$ and $B = I_{n \times n}$ in [3].
- In our work:
 - *z* as quadratic monomials
 - B is the corresponding matrix

Quadratic Constraints (QCs)

- In general, a nonlinearity $z = \phi(x)$ is hard to analyze
- Use QCs to describe the input-output behavior of ϕ

$$\begin{bmatrix} x \\ z \end{bmatrix}^{\top} M_i \begin{bmatrix} x \\ z \end{bmatrix} \ge 0, \, \forall z = \phi(x), x \in \mathcal{E}_{\alpha}$$

- If the Lur'e system is quadratically stabile with the set of QCs, the system with the actual nonlinearity ϕ is stable
- A set of QCs that describe ϕ more accurately is desired
 - Analyzing with a smaller set of possible nonlinearities

QC on a Quadratic Nonlinearity

• A quadratic nonlinearity $z_i = \phi_i(x) = x^\top Q_i x$ • E.g., $z_i = x_1^2 + 4x_1 x_2 = \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}^\top \begin{bmatrix} \mathbf{1} & \mathbf{2} \\ \mathbf{2} & \mathbf{0} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$

In the unit circle $\{x^{\top}x \leq 1\}$

- Cauchy-Schwartz QC (CSQC) [3]
 - In a local region $\mathcal{E}_{\alpha} = \{x : x^{\top} E x \leq \alpha^2\}$

$$\begin{bmatrix} x \\ z \end{bmatrix}^{\top} \begin{bmatrix} \alpha^2 (Q_i E^{-1} Q_i) & 0 \\ 0 & -e_i e_i^{\top} \end{bmatrix} \begin{bmatrix} x \\ z \end{bmatrix} \ge 0, \, \forall x \in \mathcal{E}_{\alpha}$$
$$\underbrace{M(E, \alpha)}$$

$$\Rightarrow x^{\mathsf{T}} (\alpha^2 (Q_i E^{-1} Q_i)) x - z_i^2 \ge 0$$

Quadratic Stability Condition

• Consider the Lur'e system $\begin{cases} \dot{x} = Ax + Bz \\ z = \phi(x) \end{cases}$, where the nonlinearity $z = \phi(x)$

satisfies the local QC $\{M_i\}$ in \mathcal{E}_{α} .

• If
$$\exists P > 0 \text{ and } \xi_i \ge 0 \text{ such that } \begin{bmatrix} A^\top P + PA & PB \\ B^\top P & 0 \end{bmatrix} + \sum_i \xi_i M_i < 0$$

- $V(x) = x^{\top} P x$ is a quadratic Lyapunov function
- $\dot{V}(x) < 0 \ \forall x \in \mathcal{E}_{\alpha}$ (can be shown by S-procedure [7])
- $\{x : V(x) \le c\} \subseteq \mathcal{E}_{\alpha}$ is an ROA

Finding the Largest ROA Estimate

Maximize r ξ, P, r, E, α Subject to: $\frac{S_r}{\dot{V}(x)} \subseteq \{V(x) \le 1\} \subseteq \mathcal{E}_{\alpha}$ $\dot{V}(x) < 0, \ \forall x \in \mathcal{E}_{\alpha}$

- By Lyapunov stability
 - $\{V(x) \le 1\}$ is an invariant set
 - The sphere S_r is an ROA estimate

• Can be solved by SDPs with iteratively update $\{E, \alpha\}$ [3]