Quadratic Constraints for Local Stability Analysis of Quadratic Systems

2022 IEEE Conference on Decision and Control, Cancun, Mexico

Shih-Chi Liao University of Michigan Dept. of EECS

Maziar Hemati University of Minnesota Dept. of AEM

Peter Seiler University of Michigan Dept. of EECS

Acknowledgement: This work was funded by the US Army Research Office

Motivation: Quadratic Systems

• Navier-stokes equations • Population dynamics • Taylor approximation

 $\dot{x}(t) = Ax(t) + \phi(x(t)),$ where $\phi(\cdot)$ is a quadratic function

How to analyze the local stability of such nonlinear quadratic systems?

Key Takeaways

- 1. Proposed **new quadratic constraint (QC)** to characterize quadratic nonlinearities
- **2. Reduced conservatism** in stability analysis using newly proposed QCs
- 3. The new QCs can be applied to other **analysis involving dissipation inequality** such as prformance, reachability, robustness

Outline

- Motivation
- Problem Formulation
- Region of Attraction Estimation using Quadratic Constraints
- Quadratic Constraints for Quadratic Functions
- Numerical Example
- Conclusion

Problem Formulation

- Given a quadratic nonlinear ODE
	- $A \in \mathbb{R}^{n \times n}$ is Hurwitz.
	- \bullet ϕ is homogenous quadratic polynomial
	- Multiple equilibrium points.
- Region of attraction (ROA) of the origin*:
	- Initial conditions that converge to the origin
- Goal: find a largest spherical ROA estimate
	- Radius as the metric of the size of ROA estimate

$$
\dot{x}(t) = Ax(t) + \phi(x(t))
$$

**Other equilibrium can be shifted to origin and form another quadratic system by change of coordinates.*

Methods for ROA Estimation

- Direct simulation
	- Easy to verify stability of initial conditions
	- No guaranteed over a region
- Lyapunov stability using sum-of-square optimization [1][2]
	- Good estimation with high-degree Lyapunov function
	- Suffer from curse of dimensionality
- **Absolute stability using quadratic constraints (QCs) [3][4][5]**
	- Moderate scalability
	- **Conservative estimation**

[1] P. Parrilo, "Structured Semidefinite Programs and Semialgebraic Geometry Methods in Robustness and Optimization," Thesis, 2000

[2] U. Topcu, A. Packard, P. Seiler, and G. Balas, "Help on SOS," IEEE CSM. 2010

[3] C. Liu and D. F. Gayme, "I/O inspired method for permissible perturbation amplitude of transitional wall-bounded shear flows," Phys. Rev. E, 2020

[4] A. Kalur, T. Mushtaq, P. Seiler, and M. S. Hemati, "Estimating ROA for Transitional Flows using QC," IEEE L-CSS, 2021

[5] L. F. Toso, R. Drummond, and S. R. Duncan, "Regional stability analysis of transitional fluid flows," IEEE L-CSS, 2022

ROA Estimation using Quadratic Constraints

[6] V. M. Popov, "Absolute stability of nonlinear systems of automatic control," Automation Remote Control, 1962

[7] V. A. Yakubovich, "Frequency condition of absolute stability …," Avtomat. i Telemekhan., 1967

[8] A. Megretski and A. Rantzer, "System analysis via integral quadratic constraints," *IEEE TAC*, 1997

[9] J. Veenman, C. W. Scherer, and H. Köroğlu, "Robust stability and performance analysis based on IQC." *European Journal of Control*, *2016*

Quadratic Constraints

Consider nonlinearity $\phi: \mathbb{R} \to \mathbb{R}$ is (locally) sector bounded in $[\alpha, \beta]$:

$$
\bullet \ \ z = \phi(x)
$$

- $(z \alpha x)(\beta x z) \geq 0 \ \forall x \in \mathcal{E}$
- Characterize ϕ by its input and output signals:

$$
\begin{bmatrix} x \\ z \end{bmatrix}^{\top} M_{\alpha,\beta} \begin{bmatrix} x \\ z \end{bmatrix} \geq 0, \, z = \phi(x), \forall x \in \mathcal{E}
$$

A tighter QC provides a more accurate description of $\boldsymbol{\phi}(\cdot)$ **and gives a less conservative analysis.**

Existing QCs for Quadratic function

- [3] proposed QCs to bound $\phi(\cdot)$ in a spherical local region $\{x | x^{\top} x \leq \alpha^2\}$.
- [4] applied Cauchy-Schwarz inequality to generalized QCs to an ellipsoidal local region $\{x \mid x^\top P x \le \alpha^2\}$, named **CSQC**.

[3] C. Liu and D. F. Gayme, "I/O inspired method for permissible perturbation amplitude of transitional wall-bounded shear flows," Phys. Rev. E, 2020 [4] A. Kalur, T. Mushtaq, P. Seiler, and M. S. Hemati, "Estimating ROA for Transitional Flows using QC," IEEE L-CSS, 2021

Conservatism of CSQC [4]

- $z_1 = x_i^2$
	- Positive definite
- CSQC in $\{x^\top x \leq 1\}$
	- $x_i^2 z_1^2 \ge 0$

- $z_2 = x_i x_j$, $i \neq j$
	- Sign-indefinite
- CSQC in $\{x^\top x \leq 1\}$
	- $\overline{1}$ $\frac{1}{4}(x_i^2 + x_j^2) - z_2^2 \ge 0$

CSQC is loose along $x_i = 0$ *and* $x_i = 0$

[4] A. Kalur, T. Mushtaq, P. Seiler, and M. S. Hemati, "Estimating ROA for Transitional Flows using QC," IEEE L-CSS, 2021

New QCs on $z_2 = x_i x_j$

- CSQC is loose along $x_i = 0$
- **Valley QC** along $x_i = 0$:

$$
\begin{pmatrix} x_i^2 - z_2^2 = x_i^2 (1 - x_j^2) \\ \ge 0 \quad \forall x \in \{x^\top x \le 1\} \end{pmatrix}
$$

- Tight along $x_i = 0$
- Loose elsewhere

CSQC and Valley QCs jointly Bound $z_2 = x_i x_i$

• Monomial
$$
z_2 = x_i x_j
$$

• Less conservative characterization by CSQC, Valley QC 1, and Valley QC 2

- Generalization of Valley QC:
	- Ellipsoidal region $\{x^{\top} E x \leq \alpha^2\}$
	- Quadratic fun. with Hessian being **rank-2 and sign-indefinite**
	- Quadratic fun. with Hessian being **rank-3 and sign-indefinite**
	- Cross-product of quadratic functions (inspired by [5])

See paper for more details

[5] L. F. Toso, R. Drummond, and S. R. Duncan, "Regional stability analysis of transitional fluid flows," IEEE L-CSS, 2022

Numerical Examples – 2-State Example [6]

$$
\frac{d}{dt} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -50 & -16 \\ 13 & -9 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \begin{bmatrix} 13.8 \\ 5.5 \end{bmatrix} x_1 x_2.
$$

- Largest spherical ROA ≈ 4.95
- ROA estimation using two sets of QC
	- Set 1: $r_1^* = 2.7355$
		- 1* CSQC
	- Set 2: $r_2^* = 3.5224$
		- 1* CSQC, 2* Valley QCs
- The use of Valley QCs produce a better estimation.
- A 3-state example is presented in the paper.

[6] F. Amato, C. Cosentino, and A. Merola, "On the region of asymptotic stability of nonlinear quadratic systems," Mediterranean CCA, 2006

Conclusions

- 1. Proposed **new quadratic constraints** to characterize quadratic nonlinearities
- **2. Reduced conservatism** in stability analysis using newly proposed QCs
- 3. The new QCs can be applied to other **analysis involving dissipation inequality**

Peter Seiler Maziar Hemati Talha Mushtaq Diganta Bhattacharjee Aniketh Kalur

BACKUP SLIDES

Lur'e Decomposition

- $\dot{x} = Ax + \phi(x)$ • System:
- Separate the linear part and nonlinear part of a system into feedback interconnection:

$$
\dot{x} = Ax + Bz
$$

$$
Bz = \phi(x)
$$

- \bullet *B* is a matrix
- z is a vector

- $z = \phi(x)$ and $B = I_{n \times n}$ in [3].
- In our work:
	- z as quadratic monomials
	- B is the corresponding matrix

Quadratic Constraints (QCs)

- In general, a nonlinearity $z = \phi(x)$ is hard to analyze
- Use QCs to describe the input-output behavior of ϕ

$$
\begin{bmatrix} x \\ z \end{bmatrix}^\top M_i \begin{bmatrix} x \\ z \end{bmatrix} \ge 0, \forall z = \phi(x), x \in \mathcal{E}_{\alpha}
$$

- If the Lur'e system is quadratically stabile with the set of QCs, the system with the actual nonlinearity ϕ is stable
- A set of QCs that describe ϕ more accurately is desired
	- Analyzing with a smaller set of possible nonlinearities

QC on a Quadratic Nonlinearity

• A quadratic nonlinearity $z_i = \phi_i(x) = x^\top Q_i x$ • E.g., $z_i = x_1^2 + 4x_1x_2 =$ x_1 x_2 $\begin{bmatrix} 1 & 2 \end{bmatrix}$ $2\quad 0$ x_1 x_2

In the unit circle $\{x^{\mathsf{T}} x \leq 1\}$

- Cauchy-Schwartz QC (CSQC) [3]
	- In a local region $\mathcal{E}_{\alpha} = \{x : x^{\top} E x \leq \alpha^2\}$

$$
\begin{bmatrix} x \\ z \end{bmatrix}^{\top} \begin{bmatrix} \alpha^2(Q_i E^{-1}Q_i) & 0 \\ 0 & -e_i e_i^{\top} \end{bmatrix} \begin{bmatrix} x \\ z \end{bmatrix} \ge 0, \forall x \in \mathcal{E}_{\alpha}
$$

$$
\Rightarrow x^{\top} (a^2 (Q_i E^{-1} Q_i)) x - z_i^2 \ge 0
$$

Quadratic Stability Condition

• Consider the Lur'e system $\begin{cases} x = Ax + Bz \\ z = \phi(x) \end{cases}$, where the nonlinearity $z = \phi(x)$

satisfies the local QC $\{M_i\}$ in \mathcal{E}_{α} .

• If
$$
\boxed{\exists P > 0 \text{ and } \xi_i \geq 0 \text{ such that } \begin{bmatrix} A^{\mathsf{T}}P + PA & PB \\ B^{\mathsf{T}}P & 0 \end{bmatrix} + \sum_i \xi_i M_i < 0}
$$

- $V(x) = x^{\text{T}} P x$ is a quadratic Lyapunov function
- $\dot{V}(x)$ < 0 $\forall x \in \mathcal{E}_{\alpha}$ (can be shown by S-procedure [7])
- $\{x: V(x) \leq c\} \subseteq \mathcal{E}_{\alpha}$ is an ROA

Finding the Largest ROA Estimate

Maximize ξ , P, r, E, α *Subject to:* $S_r \subseteq \{V(x) \leq 1\} \subseteq \mathcal{E}_{\alpha}$ $\dot{V}(x) < 0, \ \forall x \in \mathcal{E}_{\alpha}$

- By Lyapunov stability
	- $\{V(x) \leq 1\}$ is an invariant set
	- The sphere S_r is an ROA estimate

Can be solved by SDPs with iteratively update $\{E, \alpha\}$ [3]