

Safety-Critical Control with Sector-Bounded Uncertainties using Robust Control Barrier Function

Shih-Chi Liao¹, Jyot Buch², Peter Seiler¹

Safe Region

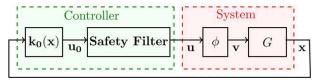
 $h(x) \ge 0$

 $\frac{\partial x}{\partial x}(x)$

Unsaf

Region

¹Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, MI. ²Aerospace Engineering and Mechanics, University of Minnesota, Twin Cities, MN.


Motivation

- · Safety has highest priority for many autonomous systems.
- Control Barrier Function (CBF) [1] is a method to ensure safety. However, CBF requires perfect model of the system.
- · Robust CBF (RCBF) is needed to handle uncertainties.

Objectives

Design a safety filter that minimally alters baseline controller and satisfy safety requirements despite the model uncertainty ϕ .

Uncertainty and RCBF

Sector-bounded Uncertainty $\phi(u)$:

- A function with uncertain output
- · Bound by two linear functions
- · Can rewrite into norm-bounded form with an additive uncertain input w and a magnitude parameter θ

Robust Control Barrier Function h(x):

- · A function describes safety
- System is safe for all uncertainty in φ if the condition holds:

$$\inf_{w \in \mathcal{W}} \dot{h}(x, u, w) + \eta(h(x)) \ge 0$$

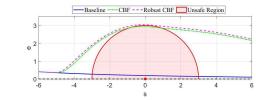
Robust Safety Filter

Safety filter is cast as an optimization problem with RCBF constraint:

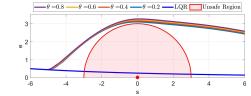
 $u^*(x) = \arg \min ||u - u_0||_2$ $\inf_{w \in \mathcal{W}} \dot{h}(x, u, w) + \eta(h(x)) \ge 0$ s.t.

- · Can be reformulated as Second-Order Cone Program (SOCP), a convex problem that can be solved efficiently
- If $u^*(x)$ is feasible, $u^*(x)$ render the system safe forward in time.

ehicle Lateral Control


Obstacle avoidance scenario:

- · Constant vehicle forward speed
- · Uncertainty in turning interaction


Vehicle model:

- e: lateral deviation from path
- s: path progression
- ψ : vehicle heading u: steering input

Simulation with the worst-case uncertain system:

Simulation with varying robustness level of RCBF design:

Conclusions

With the RCBF-based safety filter, the autonomous system can:

- · Provide robust safety guarantee
- · Consider uncertainties explicitly
- Enable applications for a more general setting

In our paper [2], we further discuss followings:

- · Proof of robust safety guarantee
- · Reformulation and derivation of SOCP
- · Continuity of the RCBF-based safety filter
- Limitation of RCBF-based safety filter
- · Extensions and future work

Acknowledgements

UC Berkeley:

- Prof. Murat Arcak
- Kata Schweidel
- Adnane Saoud
- NAWCWD China Lake:
- Doug Philbrick

References

- [1] A. D. Ames, X. Xu, J. W. Grizzle, and P. Tabuada, "Control barrier function based quadratic programs for safety critical systems," IEEE Transactions on Automatic Control (TAC), 2016
- J. Buch, S. Liao, and P. Seiler, "Robust control barrier functions [2] with sector-bounded uncertainties," arXiv:2109.02537, 2021.

Our paper:

- $v = \phi(u)$